A Central Pattern Generator based Nonlinear Controller to Simulate Biped Locomotion with a Stable Human Gait Oscillation

نویسندگان

  • G. C. Nandi
  • Soumik Mondal
  • Anup Nandy
  • S. Mondal
  • A. Nandy
چکیده

This paper describes the designing of a nonlinear biological controller inspired from stable human gait locomotion, which we implement for a stable biped motion on a Biped Robot. The design of a Central Pattern Generator (CPG) which consists of a four coupled Rayleigh Oscillators. A TwoWay oscillator coupling has been used for modeling the CPG. The parameters of the CPG are then optimized by Genetic Algorithm (GA) to match with the stable human gait oscillation. The stable human gait oscillation data was obtained using the Intelligent Gait Oscillation Detector (IGOD) biometric suit, which simultaneously measures both the human hips and knee oscillations. After checking the Limit Cycle behavior of the CPG it has been successfully simulated on the Spring Flamingo robot in YOBOTICS environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized Joint Trajectory Model with Customized Genetic Algorithm for Biped Robot Walk

Biped robot locomotion is one of the active research areas in robotics. In this area, real-time stable walking with proper speed is one of the main challenges that needs to be overcome. Central Pattern Generators (CPG) as one of the biological gait generation models, can produce complex nonlinear oscillation as a pattern for walking. In this paper, we propose a model for a biped robot joint tra...

متن کامل

Development of a three-dimensional dynamic biped walking via the oscillation of telescopic knee joint and its gait analysis

The purpose of this study is to extend the three-dimensional (3-D) passive dynamic biped walker to a 3-D dynamic biped walker, i.e., a walker that can walk on a horizontal surface based on a passive dynamic walking. A new prototype of 3-D biped walker called RW04, which has telescopic knee joints, was developed and its ability for walking was validated through some experiments. A sinusoidal osc...

متن کامل

Using the Adaptive Frequency Nonlinear Oscillator for Earning an Energy Efficient Motion Pattern in a Leg- Like Stretchable Pendulum by Exploiting the Resonant Mode

In this paper we investigate a biological framework to generate and adapt a motion pattern so that can be energy efficient. In fact, the motion pattern in legged animals and human emerges among interaction between a central pattern generator neural network called CPG and the musculoskeletal system. Here, we model this neuro - musculoskeletal system by means of a leg - like mechanical system cal...

متن کامل

Simulating the Hip and Knee Behavior of a Biped by Means of Nonlinear Oscillators

Nervous networks in the spinal marrow are capable to produce rhythmic movements, such as: swimming, jumping, and walking. These specialised nervous systems are known as central pattern generators (CPGs). Nonlinear oscillators can be used in control systems of locomotion as pattern generators similar to the pattern of human gait, providing the approach trajectories of the legs. The objective of ...

متن کامل

Gait Generation and Transition of a Biped Robot Based on Kinematic Synergy in Human Locomotion

Humans have an extremely redundant system for locomotion. To handle the redundancy problem, humans use coordinative structures using conditions of constraint in their joint movements to reduce the number of degrees of freedom, which is called kinematic synergy. This chapter shows some characteristics in the kinematic synergy in human locomotion and shows a locomotion control system for a biped ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011